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Abstract
The transient fluctuation theorem for stochastic processes was first put forward
by D J Searles and D J Evans (1999). In the present paper, it is rigorously proved
that the transient fluctuation theorem (TFT) of sample entropy production,
which is previously defined by Jiang et al (2003) and Reid et al (2005) and
also called the general action functional up to boundary terms by Lebowitz and
Spohn (1999), holds for general stochastic processes without the assumption of
Markovian, homogeneous or stationary properties. Then the condition of our
theorem is verified for various stochastic processes, including homogeneous,
inhomogeneous Markov chains and general diffusion processes. Among these
cases, the transient fluctuation theorems for inhomogeneous Markov chains
and general diffusion processes are rigorously derived for the first time.

PACS numbers: 05.40.−a, 05.70.−a, 05.70.Ln

1. Introduction

The fluctuation theorem (FT) gives a general formula valid in nonequilibrium systems, for the
logarithm of the probability ratio of observing trajectories that satisfy or ‘violate’ the second
law of thermodynamics. In 1993, Evans, Cohen and Morriss [6] found in computer simulations
that the natural invariant measure of a stationary nonequilibrium system has a symmetry, which
is later called the fluctuation theorem by Gallavotti and Cohen [9, 10]. Motivated by the result
in [6], Gallavotti and Cohen [8, 10] gave the first mathematical presentation of the fluctuation
theorem for stationary nonequilibrium systems modelled by hyperbolic dynamical systems:
provided that the dynamics satisfies time reversal invariance and is sufficiently chaotic, the
probability distributions of the phase space contraction averaged over a large time span t
have a highly non-obvious symmetry, whose specific form is given by the large deviation
rate function. Besides the steady-state fluctuation theorem, Evans and Searles [1, 7, 36–38]
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considered transient, nonequilibrium systems and employed a known equilibrium state as the
initial distribution to derive a transient fluctuation theorem.

Except for the deterministic nonequilibrium systems, Kurchan [22] pointed out that
the fluctuation theorem also holds for certain diffusion processes. Lebowitz and Spohn
[23] extended Kurchan’s results to quite general Markov processes, and investigated various
examples. Furthermore, they mentioned that the logarithm of the Radon–Nikodym derivative
of the process with respect to its time-reversal can be regarded to be a definition of the
action functional in a general stochastic dynamics without Markovian condition. Searles and
Evans [35] derived informally the transient fluctuation theorem for a class of non-stationary
stochastic systems. However, their proof is not purely mathematically rigorous. In 2003,
Jiang and Zhang [20] gave some rigorous mathematical results about the entropy production
fluctuation for Markov chains, including both steady-state fluctuation theorem and transient
fluctuation theorem.

Since the emergence of fluctuation theorems in 1993, their degree of universality is an
interesting subject of investigation. It is therefore useful to have rigorous derivations for as
much physical situations as possible in order to rule out the existence of counterexamples in
particular physical systems.

In the present paper, we only focus on the derivation of the Evans–Searles fluctuation
theorem [35] for general stochastic processes. Our definition of sample entropy production
comes from the previous works [20] and [32]. It is also called the general action functional
by Lebowitz and Spohn [23] up to boundary terms. We rigorously proved that the transient
fluctuation theorem (TFT) of sample entropy production holds for general stochastic processes
without the assumption of Markovian, homogeneous or stationary properties. Most of the
previous works on this subject are not purely mathematically rigorous, or based on several
additional assumptions. Therefore, although the derivation of theorem 2.2 is easy from the
mathematical point of view, it is a unified result without any additional assumption on the
underlying dynamics.

The concept of entropy production was first put forward in nonequilibrium statistical
physics to describe how far a specific state of a system is from its equilibrium state [14, 25, 34].
In [28–30], a measure-theoretic definition of entropy production rate is given for stochastic
processes, unifying different entropy production formulae in various concrete cases. Entropy
production is defined as the specific relative entropy of the process with respect to its time
reversal, which is just the time-averaged expectation of the action functional mentioned in
[23]. Here, we recommend a recent book [19] on the mathematical theory of nonequilibrium
steady states.

Recently, inhomogeneous stochastic processes have attracted much interest from
statistical physicists, including the diffusion approximation for master equations [21] and
the relationship between Jarzynski’s equality and fluctuation theorems [2–4, 15–18].

Time inhomogeneity causes many difficulties in studying mathematically the physical
properties of stochastic processes. We have investigated the statistical physical properties of
inhomogeneous Markov chains since 2004, including reversibility, entropy production and
generalized Jarzynski’s equality [11–13].

We will verify the condition of our main result, theorem 2.2, for various stochastic
processes in section 3, including homogeneous, inhomogeneous Markov chains and general
diffusion processes. Among these cases, the applications of theorem 2.2 to the inhomogeneous
case, the discrete time case and general diffusion processes are all new, which have not ever
been pointed out before.

Furthermore, our results also hold for other Markov processes such as the semi-Markov
processes [26] and non-Markovian processes.
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2. Transient fluctuation theorems of general stochastic processes

The proof here is enlightened by [20].
Consider a coordinate process {Xt : t � 0} on the canonical trajectory space {�,F, P},

where � ⊆ {A map ω from R
+ or Z

+ to a polish space E that is right continuous having left
limit} and Xt(ω) = ωt .

Given T > 0, define the time-reversal transformation as follows,

r: (�,F) → (�,F), Xt (rω) = lim
s↑T −t

Xs(ω), ∀t ∈ [0, T ],

(in discrete time case, Xr(rω) = XT −t (ω)) then r is F[0,T ]-measurable and invertible with
r−1 = r , where F[0,T ] is the σ -algebra generated by {Xt : 0 � t � T }. We generally suppose
that

ω ∈ � ⇐⇒ rω ∈ �,

and by the π − λ theorem [5, pp 447], we have that ∀A ∈ F[0,T ] ⇐⇒ rA ∈ F[0,T ], where
rA = {rω: ω ∈ A}.

Denote P[0,T ] as the distribution of {Xt(ω): t ∈ [0, T ]}, and define P
−
[0,T ] = rP[0,T ],

which is just the distribution of {XT −t (ω): t ∈ [0, T ]}. So ∀A ∈ F[0,T ], one has P[0,T ](A) =
P

−
[0,T ](rA).

Here is the key lemma of our proof.

Lemma 2.1. If P[0,T ] and P
−
[0,T ] are absolutely continuous with respect to each other, then

dP[0,T ]

dP
−
[0,T ]

(ω) = dP
−
[0,T ]

dP[0,T ]
(rω), a.e.

Proof. ∀A ∈ F[0,T ], from P[0,T ](A) = P
−
[0,T ](rA) and the property of the Radon–Nikodym

derivative [5, pp 480] follows:∫
A

[
dP

−
[0,T ]

dP[0,T ]
(rω)

]
dP

−
[0,T ](ω) =

∫
r−1A

[
dP

−
[0,T ]

dP[0,T ]
(r(r−1ω))

]
dP[0,T ](ω)

=
∫

rA

[
dP

−
[0,T ]

dP[0,T ]
(ω)

]
dP[0,T ](ω)

=
∫

rA

dP
−
[0,T ](ω)

= P
−
[0,T ](rA)

= P[0,T ](A).

Finally, from the definition of the Radon–Nikodym derivative [5, pp 220] follows the
desired result. �

Define WT = log dP[0,T ]

dP
−
[0,T ]

(ω), and regard W
T

as the sample entropy production. It is important

to emphasize that WT is equal to the ‘action functional’ defined by Lebowitz and Spohn [23])
up to boundary terms of the initial distribution of X0 and the final distribution of XT . In fact
it is the presence of these boundary terms to ensure the validity of the transient fluctuation
theorem. A recent work investigating this problem in homogeneous Markov processes, which
is of physical relevance, suggests that these boundary terms in fact cannot be neglected [31].
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Theorem 2.2 (transient fluctuation theorem). Under the condition of lemma 2.1, for each
z ∈ R,

P[0,T ]

(
WT

T
= z

)
= eT z

P[0,T ]

(
WT

T
= −z

)
.

Proof

P[0,T ]

(
WT

T
= z

)
= P[0,T ]

(
dP[0,T ]

dP
−
[0,T ]

(ω) = eT z

)

= eT z
P

−
[0,T ]

(
dP[0,T ]

dP
−
[0,T ]

(ω) = eT z

)

= eT z
P[0,T ]

(
dP[0,T ]

dP
−
[0,T ]

(rω) = eT z

)

= eT z
P[0,T ]

(
dP

−
[0,T ]

dP[0,T ]
(ω) = eT z

)

= eT z
P[0,T ]

(
dP[0,T ]

dP
−
[0,T ]

(ω) = e−T z

)

= eT z
P[0,T ]

(
WT

T
= −z

)
.

�

Remark 2.3. Indeed the derivation of theorem 2.2 is essentially identical to that given in
[19, pp 39] and [32]. If WT takes values in a continuous set, then P[0,T ]

(
WT

T
= z

)
in the

previous theorem must be regarded as the probability density rather than the probability itself.

In case one can divide over, the above equality can be written as

P[0,T ]
(

WT

T
= z

)
P[0,T ]

(
WT

T
= −z

) = eT z.

Such an equality is called the transient fluctuation theorem by Evans et al [1, 7, 35–38].
Roughly speaking, the transient fluctuation theorem gives a formula for the probability

ratio that the sample entropy production rate WT

T
takes a value z to that of −z, and the ratio

is eT z.

3. Applications

3.1. Homogeneous Markov chains

This subsection is rewritten from [20].

3.1.1. The case of discrete time parameter. Let ξ = {ξn: n ∈ Z
+} be a positive recurrent

irreducible discrete time Markov chain with denumerable state space S and transition
probability matrix P = (pij )i,j∈S on its canonical orbit space (�,F, P), where � = SZ,

F = σ {ξn: n ∈ Z
+} and P is the distribution of ξ . Its initial distribution ν(0) = {νi(0)}i∈S may

be not necessarily its invariant probability distribution � = {πi}i∈S . Denote the distribution
of ξn by ν(n) = {νi(n)}i∈S .
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Suppose that the initial distribution ν(0) satisfies νi(0) > 0,∀i ∈ S. For each n ∈ Z
+

and k ∈ N, denote by P[n,n+k] and P
−
[n,n+k] respectively the restrictions of P and P

− on Fn+k
n =

σ(ξm: n � m � n + k). Assume that the transition matrix P satisfies the condition

pij > 0 ⇔ pji > 0, ∀i, j ∈ S. (1)

The following lemma is analogous to proposition 2.1 in [20].

Lemma 3.1. Under the condition (1), P[n,n+k] and P
−
[n,n+k] are absolutely continuous with

respect to each other, and the Radon–Nikodym derivative is given by

dP[n,n+k]

dP
−
[n,n+k]

(ω) = νξn(ω)(n)pξn(ω)ξn+1(ω) · · ·pξn+k−1(ω)ξn+k(ω)

νξn+k(ω)(n)pξn+k(ω)ξn+k−1(ω) · · · pξn+1(ω)ξn(ω)

, P − a.s.

Thus ξ satisfies the condition of theorem 2.2. Its entropy production rate is measure-
theoretically defined as

ep = lim
k→+∞

1

k
EP log

dP[n,n+k]

dP
−
[n,n+k]

= 1

2

∑
i,j∈S

(πipij − πjpji) log
πipij

πjpji

.

Denote Wn(ω) = log dP[0,n]

dP
−
[0,n]

(ω), then Wn(ω)

n
can be regarded as the time-averaged entropy

production rate of the sample trajectory ω of the stochastic system modelled by the Markov
chain ξ . It holds that

P

(
Wn

n
= z

)
= enz

P

(
Wn

n
= −z

)
. (2)

Since S is denumerable, Wn

n
only takes a denumerable number of values and both sides of

the above equality may simultaneously be equal to zero.
If the Markov chain ξ is not reversible, then for z > 0 in a certain range, the sample

entropy production rate Wn

n
has a positive probability to take the value z > 0 as well as the

value −z, but the fluctuation theorem tells that the former probability is greater, which accords
with the second law of thermodynamics.

3.1.2. The case of the continuous time parameter. As in the discrete time case, the transient
fluctuation theorem holds for stationary or non-stationary Markov chains with a continuous
time parameter.

Let ξ = {ξt : t ∈ R
+} be an irreducible Markov chain with finite state space S =

{1, . . . , d}, and conservative transition density matrix Q = (qij )i,j∈S on its canonical orbit
space (�,F, P) consisting of trajectories that are right continuous with left limits. Its initial
distribution ν(0) = {νi(0)}i∈S may be not necessarily its invariant probability distribution
� = {πi}i∈S . We assume that the initial distribution ν(0) satisfies νi(0) > 0,∀i ∈ S, and
denote the distribution of ξt by ν(t) = {νi(t)}i∈S .

Similarly, as in the discrete time case, assume that the transition density matrix Q satisfies
the condition

qij > 0 ⇔ qji > 0, ∀i, j ∈ S. (3)

For each s ∈ R
+ and t ∈ R

+, denote by P[s,s+t) and P
−
[s,s+t) respectively the restrictions of P

and P
− on F s+t

s = σ(ξu: s � u < s + t).
The following lemma is analogous to proposition 3.1 in [20].
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Lemma 3.2. Under the condition (3), P[s,s+t) and P
−
[s,s+t) are absolutely continuous with

respect to each other, and the Radon–Nikodym derivative is given by
dP[s,s+t)

dP
−
[s,s+t)

|Ai0 i1 ···in (t) = νi0(s)qi0i1 · · · qin−1in

νin (s)qinin−1 · · · qi1i0

, P−a.s.,

where Ai0i1···in (t) = {ω ∈ �: ω jumps n times in [s, s + t), and the states are i0, . . . , in
in turn}.
Thus ξ satisfies the condition of theorem 2.2. The entropy production rate ep of the Markov
chain ξ can be measure-theoretically defined by

ep
def= lim

t→+∞
1

t
H(P[0,t), P

−
[0,t)) = lim

t→+∞
1

t
EP log

dP[0,t)

dP
−
[0,t)

= 1

2

∑
i,j∈S

(πiqij − πjqji) log
πiqij

πjqji

,

or when ν(0) = �, equivalently, as in [29, 30], by

ep
def= lim

t↓0+

1

t
H(P[s,s+t), P

−
[s,s+t)) = lim

t↓0+

1

t
EP log

dP[s,s+t)

dP
−
[s,s+t)

,

where s ∈ R
+ is arbitrarily fixed. The equivalence is a direct corollary of theorem 10.4 in

Varadhan [39].
Denote Wt = log dP[0,t)

dP
−
[0,t)

, then Wt (ω)

t
can be regarded as the time-averaged entropy

production rate of the sample trajectory ω of the stochastic system modelled by the Markov
chain ξ . It holds that

P

(
Wt

t
= z

)
= etz

P

(
Wt

t
= −z

)
, ∀t > 0, z ∈ R.

3.2. Inhomogeneous Markov chains

3.2.1. Time-periodic inhomogeneous Markov chain. This subsection is recapitulated from
[11]. In that paper, we consider periodically inhomogeneous Markov chains, which can be
regarded as a simple version of the physical model—Brownian motors [33].

Let ξ = {ξn: n = 0, 1, 2, . . .} be a periodically inhomogeneous Markov chain on its
canonical orbit space

(
� = ∏

Z
+ S,F, P

)
with denumerable state space S and transition

probability matrix P(m,m + 1) = (pij (m,m + 1))i,j∈S (we also write it as P m = (
pm

ij

)
i,j∈S

instead for simplicity), where pij (m, n) = P(ξn = j |ξm = i),∀m � n. There exists a positive
integer T such that

pij (m,m + 1) = pij (m + T ,m + T + 1), ∀i, j ∈ S, m ∈ Z
+. (4)

Denote the distribution of ξn by ν(n) = {νi(n)}i∈S .
For each fixed k = 0, 1, . . . , T − 1, the entropy production rate ek

p of index k of the
periodically inhomogeneous Markov chain ξ = {ξn: n = 0, 1, 2, . . .} is measure-theoretically
defined as

ek
p = lim

n→∞
1

nT
H(P[k,nT +k], P

−
[k,nT +k])

= lim
n→∞

1

nT
EP log

dP[k,nT +k]

dP
−
[k,nT +k]

(ω)

= 1

2T

∑
i0,i1,···,iT ∈S

{[
πk

i0
pk

i0i1
pk+1

i1i2
· · ·pk+T −1

iT −1iT
− πk

iT
pk

iT iT −1
pk+1

iT −1iT −2
· · · pk+T −1

i1i0

]

× log
πk

i0
pk

i0i1
pk+1

i1i2
· · · pk+T −1

iT −1iT

πk
iT

pk
iT iT −1

pk+1
iT −1iT −2

· · · pk+T −1
i1i0

}
, (5)
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where P[k,nT +k] is the distribution of (ξk, ξk+1, . . . , ξnT +k), P
−
[k,nT +k] is the distribution of

(ξnT +k, ξnT +k−1, . . . , ξk+1, ξk) and � = {π0, π1, . . . , πT −1} is the periodically stationary
distribution of ξ .

The following lemma is analogous to lemma 3.5 in [11].

Lemma 3.3. Suppose that ∀i0, i1, . . . , iT ∈ S, pk
i0i1

pk+1
i1i2

· · ·pk+T −1
iT −1iT

> 0 if and only if pk
iT iT −1

pk+1
iT −1iT −2

· · · pk+T −1
i1i0

> 0. For arbitrarily fixed k � 0, assume that νi(k) > 0 for all i ∈ S,
then P[k,nT +k] and P

−
[k,nT +k] are absolutely continuous with respect to each other, and P-almost

everywhere, the Radon–Nikodym derivative is

dP[k,nT +k]

dP
−
[k,nT +k]

(ω) = νξk(ω)(k)pk
ξk(ω)ξk+1(ω) · · · pnT +k−1

ξnT +k−1(ω)ξnT +k(ω)

νξnT +k(ω)(k)pk
ξnT +k(ω)ξnT +k−1(ω) · · ·pnT +k−1

ξk+1(ω)ξk(ω)

. (6)

Let Wk
n (ω) = log dP[k,nT +k]

dP
−
[k,nT +k]

(ω), then holds the transient fluctuation theorem

P

(
Wk

n

nT
= z

)
= enT z

P

(
Wk

n

nT
= −z

)
,

which is a generalization of corollary 4.5 in [11].

3.2.2. Discrete-time inhomogeneous Markov chains. The instantaneous reversibility and
entropy production of inhomogeneous Markov chains are defined and discussed in [12]. But
the transient fluctuation theorem has not been derived yet for this case.

Let ξ = {ξn: n = 0, 1, 2, . . .} be an inhomogeneous Markov chain with denumerable state
space S and transition probability pk

ij = P(ξk+1 = j |ξk = i). Denote the distribution of ξn by
ν(n) = {νi(n)}i∈S . The instantaneous entropy production ek

p of the inhomogeneous Markov
chain ξ at time k can be measure-theoretically expressed as

ek
p = H(P[k,k+1], P

−
[k,k+1]) = 1

2

∑
i,j∈S

(
νi(k)pk

ij − νj (k)pk
ji

)
log

νi(k)pk
ij

νj (k)pk
ji

,

where P[k,k+1] is the distribution of (ξk, ξk+1), P
−
[k,k+1] is the distribution of (ξk+1, ξk) and

H(P[k,k+1], P
−
[k,k+1]) is the relative entropy of P[k,k+1] with respect to P

−
[k,k+1].

Lemma 3.4. For arbitrarily fixed n � 0, suppose that νi(n) > 0,∀i ∈ S. Under the condition

pm
ij > 0 for some m ∈ N ⇐⇒ pm

ji > 0 for all m ∈ N,

P[n,n+k] and P
−
[n,n+k] are absolutely continuous with respect to each other, and the Radon–

Nikodym derivative is given by

dP[n,n+k]

dP
−
[n,n+k]

(ω) = νξn(ω)(n)pn
ξn(ω)ξn+1(ω) · · ·pn+k−1

ξn+k−1(ω)ξn+k(ω)

νξn+k(ω)(n)pn
ξn+k(ω)ξn+k−1(ω) · · · pn+k−1

ξn+1(ω)ξn(ω)

, P − a.s.

Denote Wn(ω) = log dP[0,n]

dP
−
[0,n]

(ω), then it also holds that

P

(
Wn

n
= z

)
= enz

P

(
Wn

n
= −z

)
. (7)
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3.2.3. Continuous-time inhomogeneous Markov chains. The instantaneous reversibility
and entropy production of continuous-time inhomogeneous Markov chains are defined and
discussed in [12]. Such chains have been recently applied to derive Jarzynski’s equality [13].
But the transient fluctuation theorem has not been derived yet for this case.

Let ξ = {ξ(t): t � 0} be an inhomogeneous Markov chain with a denumerable state space
S and a conservative continuous transition density function Q(·). Denote the distribution of
ξ(t) by ν(t) = {νi(t)}i∈S .

As in the case of homogeneous Markov chains [34], the instantaneous entropy production
rate ep(s) of the inhomogeneous Markov chain {ξ(t) : t � 0} can be measure-theoretically
expressed as

ep(s) = lim
t↓s

1

t − s
H(P[s,t], P

−
[s,t]) = 1

2

∑
i,j∈S

[νi(s)qij (s) − νj (s)qji(s)] log
νi(s)qij (s)

νj (s)qji(s)
,

where P[s,t] is the distribution of {ξ(u): s � u � t}, P
−
[s,t] is the distribution of {ξ(s + t − u):

s � u � t}, and H(P[s,t], P
−
[s,t]) is the relative entropy of P[s,t] with respect to P

−
[s,t].

Denote by nt the number of times that ξ jumps in [s, t]. Let T0 = s, T1 = inf{t > s: ξ(t) �=
ξ(s)}, Tk = inf{t > Tk−1: ξ(t) �= ξ(Tk−1)}, and Tnt +1 = t , then ∀i0, i1, . . . , in ∈ S satisfying
ik �= ik+1, 0 � k < n, we can define

Ai0i1···in (t) = {ω ∈ �: nt (ω) = n, ξ(s) = i0, ξ(Tk(ω)) = ik, k = 1, . . . , n}.
The following is lemma 4.2 in [12].

Lemma 3.5. For arbitrarily fixed s � 0, suppose that νi(s) > 0 for all i ∈ S. If the transition
density function Q(·) satisfies the condition

qij (u) > 0 for some u > 0 ⇐⇒ qji(u) > 0, ∀u > 0,

then P[s,t] and P
−
[s,t] are absolutely continuous with respect to each other. The Radon–Nikodym

derivative is a.e.

dP[s,t]

dP
−
[s,t]

∣∣∣∣
Ai0 i1 ···in (t)

= νi0(s)
∏n−1

k=0 qikik+1(Tk+1) exp
[∑n

k=0

∫ Tk+1

Tk
qikik (u) du

]
νin(s)

∏n−1
k=0 qin−k in−k+1(s + t − Tn−k) exp

[∑n
k=0

∫ s+t−Tk

s+t−Tk+1
qikik (u) du

] .

Theorem 3.6 (Transient fluctuation theorem for inhomogeneous Markov chains). Let
Wt = log dP[0,t)

dP
−
[0,t)

, then

P

(
Wt

t
= z

)
= etz

P

(
Wt

t
= −z

)
, ∀t > 0, z ∈ R.

3.3. General stationary diffusion processes

The instantaneous reversibility and entropy production of diffusion processes are defined in
[19, chapters 3, 4], but the transient fluctuation theorem has not been derived yet for this case.

The non-degenerate diffusion process ξ = {ξt }t�0 constructed in [27] and [19, chapter 3]
can also be understood as the solution of the following stochastic differential equation:

dξt = 	(ξt ) dBt + b̄(ξt ) dt, (8)

where 	(·) is a d × m matrix, b̄(·) is a vector field on R
d and {Bt }t�0 is an m-dimensional

Brownian motion. Recall that the infinitesimal generator of ξ is

A = ∇ ·
(

1

2
A(x)∇

)
+ b(x) · ∇ = 1

2

d∑
i,j=1

∂

∂xi
aij (x)

∂

∂xj
+

d∑
i=1

bi(x)
∂

∂xi
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with locally elliptic A(x) = (aij (x)) = 	(x)	T (x) and b(x) = (bi(x)) = b̄(x)− c(x), where
c(x) = 1

2∇A(x), namely ci(x) = 1
2

∑d
j=1

∂aij

∂xj . For simplicity and without loss of generality,

it can be thought that m = d and 	 = A
1
2 .

The entropy production rate ep of a stationary diffusion process ξ can be measure-
theoretically expressed as

ep
def= lim

t→+∞
1

t
H(P[0,t], P

−
[0,t])

= 1

2

∫
R

d

[2b(x) − A∇ log ρ(x)]T A−1[2b(x) − A∇ log ρ(x)]ρ(x) dx, (9)

where ρ(x) is the invariant probability density of the process and H(P[0,t], P
−
[0,t]) is the relative

entropy of P[0,t] with respect to P
−
[0,t].

The following is proposition 4.1.6 in [19], which holds for the general non-degenerate
diffusion process [19, subsection 4.1.2].

Lemma 3.7. For each t > 0, the two probability measures P[0,t] and P
−
[0,t], where P[0,t] is the

distribution of {ξs : 0 � s � t} and P
−
[0,t] is the distribution of {ξt−s : 0 � s � t}, are equivalent

to each other. Moreover, the positive measurable function dP[0,t]

dP
−
[0,t]

on
(
C([0,∞), R

d),Bt
0

)
satisfies that for P-almost every ω ∈ �,

dP[0,t]

dP
−
[0,t]

(ξ·(ω)) = exp

[∫ t

0
(2A−1b − ∇ log ρ)T (ξs) dξ̄s(ω)

+
1

2

∫ t

0
(2A−1b − ∇ log ρ)T A(2A−1b − ∇ log ρ)(ξs(ω)) ds

]
,

where dξ̄s = dξs − b̄(ξs) ds and ρ is the invariant probability density of ξ under P.

Theorem 3.8 (transient fluctuation theorem for general diffusion processes). Let Wt =
log dP[0,t]

dP
−
[0,t]

(ξ·(ω)), then for each z ∈ R,

P[0,t]

(
Wt

t
= z

)
= etz

P[0,t]

(
Wt

t
= −z

)
.

It is important to note that Wt takes values in a continuous set, so P[0,t]
(

Wt

t
= z

)
in the

previous theorem must be regarded as the probability density rather than the probability itself.
Now we will give a brief discussion of how Kurchan’s result concerning the fluctuations

of external work done on the system can be derived from our result in this subsection.
The following result is a direct corollary of theorem 3.8, which is equivalent to the ‘first

version of the fluctuation theorem’ in Kurchan’s work [22], and one can find another approach
of proof in [19, pp 65].

Corollary 3.9

E eλWt = E e−(λ+1)Wt , ∀λ ∈ R. (10)

Proof

EeλWt =
∫

eλz
P[0,t](Wt = z) dz

=
∫

eλzez
P[0,t](Wt = −z) dz
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=
∫

e−λze−z
P[0,t](Wt = z) dz

= E e−(λ+1)Wt .
�

However, from the mathematical point of view, the expression and derivation of the steady-
state fluctuation theorem in [22] are not rigorous and clear. That is why Lebowitz and Spohn
[23] introduced the language of large deviation theory to express the steady-state fluctuation
theorem, although their proof in the case of diffusion processes are not mathematically rigorous
either.

What has been rigorously proved is the ergodic theorem for sample entropy production

lim
t→∞

Wt

t
= ep,

according to [19, proposition 4.1.8].
For general diffusion processes, let ct (λ) = 1

t
log EeλWt . According to the well-known

Ellis–Gartner theorem [19, theorem 1.5.2] for a large deviation property, if
(a) each function ct (λ) is finite for all λ ∈ R,
(b) c(λ) = limt→∞ ct (λ) exists for all λ ∈ R and is finite, which is always called the free

energy function, and
(c) c(λ) is differentiable for all λ, then

{
Wt

t

}
has a large deviation property with the rate

function (also called entropy function) I (z) = supλ∈R
{λz − c(λ)}.

Under the above conditions, according to corollary 3.9, c(λ) = c(−1 − λ), which yields
I (z) = I (−z) − z. This is just the steady-state fluctuation theorem of the Lebowitz–Spohn
type, which is the mathematical counterpart of Kurchan’s work.

But it is very difficult to prove these conditions (a), (b) and (c), although they are natural
for statistical mechanical applications.
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